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INTRODUCTION
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▪ The aim of the BioIntAkt project research is to develop an intelligent sensor
system that uses artificial intelligence methods to autonomously and self-
learningly classify and count insect species according to the sounds they
make

Introduction

▪ The studies in the literature are generally based on the classification of

spectral features obtained from the sounds of insect species [4]-[7]

▪ In the study, the creation of a vector representation of the sound used in

systems such as human voice recognition, verification, etc. [1]-[3]
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SPEAKER EMBEDDING MODELS
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Audio Vector Representations

Audio File Signal Filtering MFCC
Deep Learning 

Model

Vector 

Representation
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Feature x-vector i-vector d-vector

Purpose Used in speaker 

recognition and verification

Used in speaker and 

language recognition

Used in speech and speaker 

recognition

Development Based on deep learning 

(neural networks)

Based on traditional 

statistical models

Based on deep learning 

(neural networks)

Data Requirement Requires large amounts of 

labeled data

Works with moderate 

amounts of labeled data

Requires large amounts of 

labeled data

Performance High accuracy, especially in 

noisy environments

Good performance but less 

effective in noisy 

environments

High accuracy, adaptable to 

different tasks

Complexity Complex due to deep 

learning techniques

Less complex, easier to 

implement

Complex due to neural 

networks

Usage Examples Modern voice assistants, 

biometric systems

Early voice recognition 

systems, speaker ID

Advanced voice recognition, 

emotional analysis

i-vector, x-vector, d-vector
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▪ Here are some reasons why d-vector can outperform other methods, 

especially when used with modern deep learning approaches:

Why d-vector representation?

▪ The Power of Deep Learning

▪ Feature Learning

▪ Overall Performance and Durability

▪ Adaptation and Transfer Learning

▪ Context Knowledge
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Triplet Loss and Equal Error Rate (EER)

False Rejection Rate(FRR)

False Acceptance Rate(FAR)

Equal Error Rate (EER)

F
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Threshold

Triplet Loss Function 

𝑠𝑖
𝑎𝑝

is similarity score between anchor and positive sample

𝑠𝑖
𝑎𝑛 is similarity score between anchor and positive sample

𝛼 is a margin parameter

𝐸𝐸𝑅 = 𝑚𝑖𝑛 1 − 𝑇𝑃𝑅 𝜃 − 𝐹𝑃𝑅 𝜃 = 0 | 𝜃 ∈ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠

Equal Error Rate Function

𝑇𝑃𝑅 𝜃 is the true positive rate at threshold 𝜃
𝐹𝑃𝑅 𝜃 is the false positive rate at threshold 𝜃
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MODELS
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Models
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DATASET
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Dataset

▪ InsectSet47 Dataset have been used for experiment. The dataset contains 

sound files of 5 different insect families;

▪ Cicadidae,

▪ Acrididae

▪ Gryllidae,

▪ Tettigoniidae,

▪ Trigonidiidae
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Dataset
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EVALUATION & RESULTS
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▪ Triplet loss was used in the study. During training, three files were

randomly selected and the training process was carried out according to

whether they were in the same class or not. Checkpoints obtained every

10000 triplets were recorded. With the checkpoints obtained, EER was

calculated on 42 randomly selected files. In addition, the model obtained

at the 210000th checkpoint was tested on 4371 audio pairs and an EER of

15% was obtained with LSTM and 16% with Transformer.

Evaluation
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Result
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Result
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▪ InsectSet47 dataset was used as train and test dataset

▪ LSTM model achieve to 15%, Transformer model achieve to 16% EER on

4371 audio pairs at the 210000th triplet

▪ LSTM model achieve to 13% EER at the 300000th triplet

▪ Speaker recognition models work for nature sound

▪ Re-train and test models on silence removed audio files

▪ Using real life noise on the background while training and testing

▪ Application of embedding creation model to the diarization models

Conclusion and future works
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Thank you for your attention!

Chingiz Seyidbayli
chingiz.seyidbayli@tu-clausthal.de

Image source: djd / Tourismusbetrieb der Stadt Oberharz am Brocken


