

Atomistic simulations of the shock and spall behavior of the refractory high-entropy alloy HfNbTaTiZr

SWZ-Mini-Workshop "Simulation meets AI" Name: Daniel Thürmer Institution: Clausthal University of Technology E-Mail: daniel.thuermer@tu-clausthal.de

Daniel Thürmer,¹ Orlando R. Deluigi,² Herbert M. Urbassek,³ Eduardo M. Bringa^{2, 4} and Nina Merkert¹

¹ Institute of Applied Mechanics, Clausthal University of Applied Technology, Germany
² CONICET and Faculty of Engineering, University of Mendoza, Argentina
³ Physics Department and Research Center OPTIMAS, University Kaiserslautern, Germany
⁴ Centro de Nanotecnología Aplicada, Universidad Mayor, Chile

Table of Contents

- 1. Introduction
- 2. Methods
- 3. Results
 - 1. Shock propagation and spall
 - 2. Phase transformation and twinning
 - 3. Dislocation plasticity
 - 4. Spall strength
- 4. Summary

1. Introduction

- High-entropy alloys (HEA) are getting more attention because of their promising mechanical properties
 - Good ductility, corrosion resistance, and high yield strength
- Material of interest is the quinary equiatomic HfNbTaTiZr known as the Senkov alloy
- Experimental work only exists for low strain rates
- Studied the effect of shock wave on the refractory HEA
- Investigated are shock propagation and spall, phase transformation and twinning, dislocation plasticity, and spall strength

2. Methods

- Embedded-atom-method-type potential by Xu et al. [1] used to model HfNbTaTiZr alloy
- Single crystal bcc sample created
 - ~ 1.2 million atoms
 - Lattice constant of $a_0=0.3404$ nm
 - Periodic boundary conditions in x and y direction, non-periodic in z direction
 - ~ 18.5 nm x 18.5 nm x 72.2 nm
- Two different minimization styles are used: FIRE and conjugate gradients
- Temperature rescale algorithm applied:
 - Heating up to 700 K in 20 ps
 - Held for 100 ps
 - Cooled down to 0 K over 100 ps

2. Methods

SWZ-Mini-Workshop "Simulation meets Al" - Daniel Thürmer - Clausthal University of Technology -

daniel.thuermer@tu-clausthal.de

2. Methods

- Three different piston velocities are used: 0.8 km/s, 1.2 km/s, 1.6 km/s
- Two elements of the stress tensor are particularly relevant:
 - P_{zz} , the normal stress in z direction
 - τ_{shear} , the shear stress which is calculated as followed:

$$\tau_{shear} = \frac{1}{2} (\sigma_{zz} - \frac{\sigma_{xx} + \sigma_{yy}}{2})$$

• Polyhedral Template Matching (PTM) with a Root-Mean-Square Deviation (RMSD) value of 0.1 used to identify the microstructure in OVITO

3.1. Shock propagation and spall

• Shock waves getting reflected at free surface **contraction** overlap creates a tensile pulse

- Spallation starts in the middle of the sample
 - Series of tiny voids created and amorphization occurs
 - Stronger shock waves
- many cracks + spall at multiple nucleation sites
- Weakest shock wave spall concentrated in the middle

SWZ-Mini-Workshop "Simulation meets AI" - Daniel Thürmer - Clausthal University of Technology daniel.thuermer@tu-clausthal.de

3.1. Shock propagation and spall

- Temporal evolution of two important stress characteristics
 - Stress along z direction, P_{zz}
 - Shear stress, τ_{shear}
- Error bars increase with increasing shock velocity and are caused by pressure fluctuations
- Temperature increase during spall is large, small during shock
 - Almost reaching melting point during spall

9

daniel.thuermer@tu-clausthal.de

3.2. Phase transformation and twinning

- Phase transformation the moment shock reaches bcc structure
 - Forms close-packed phase; hcp and fcc, hcp dominating
- Increase in shock strength decrease in bcc-%, increase in other-%
 - Other = unidentified structure
- Why? high shear pressures destroy periodic crystalline structural environments

3.2. Phase transformation and twinning

- Shock compression causing massive amounts of twinning in the sample
 - Reflection at free surface leads to reduction of twinning Reason? Tensile pressure
 - Spall shatters twins
- Large number of twins in agreement with refractory HEA VNbTaTiZr study [2]
 - Primary deformation is through twinning

3.3. Dislocation Plasticity

- Dislocation activity
 - Increasing with increasing time
 - Decreasing with increasing shock strength
 - Reflection leads to decrease in total dislocation length
- Short dislocation segments
 - Created by the twinning process within nanocrystalline structure
- Screw-type dominate edge-type dislocation
 - Plasticity dominated by gliding of screw dislocations [3-5]

SWZ-Mini-Workshop "Simulation meets Al" - Daniel Thürmer - Clausthal University of Technology daniel.thuermer@tu-clausthal.de

3.4. Spall strength

- Obtained using formula on the right [6]
 - Mass density = 10 g/cm³, sound velocity = 3.9 km/s from elastic constant C_{11}
- Atomic stresses more reliable than calculation using back-surface velocity profiles
 - Equation using approximations of wave propagation in a solid

$\overline{U_p}$ (km/s)	$\sigma_{\rm spall}$ (GPa)	P _{zz} (GPa)
0.8	17.9	14.9
1.2	18.2	15.4
1.6	17.3	14.1

 $\Delta u = u_{max} - u_{pull-back}$

SWZ-Mini-Workshop "Simulation meets AI" - Daniel Thürmer - Clausthal University of Technology -

daniel.thuermer@tu-clausthal.de

4. Summary

- Twinning = important mechanism, especially for smaller piston velocities
- Phase transformation essential for establishing twin structure
- Bcc transforming into hcp + fcc
- Dislocation plasticity rather less important
 - Mostly short segments, long segments rare
- Screw-type dislocations dominating after shock compression

Sources

[1] S. Xu, W.R. Jian, I.J. Beyerlein, Ideal simple shear strengths of two HfNbTaTi-based quinary refractory multi-principal element alloys. APL Mater. 10(11), 107111 (2022)

[2] M.S. Nitol, M.J. Echeverria, K. Dang, M.I. Baskes, S.J. Fensin, New modified embedded-atom method interatomic potential to understand deformation behavior in VNbTaTiZr refractory high entropy alloy. Comput. Mater. Sci. 237, 112886 (2024)

[3] G. Dirras, J. Gubicza, A. Heczel, L. Lilensten, J.-P. Couzinié, L. Perrière, I. Guillot, A. Hocini, Microstructural investigation of plastically deformed Ti20Zr20Hf20Nb20Ta20 high entropy alloy by X-ray diffraction and transmission electron microscopy. Mater. Character. 108, 1–7 (2015)

[4] J.-Ph. Couzinié, L. Lilensten, Y. Champion, G. Dirras, L. Perrière, I. Guillot, On the room temperature deformation mechanisms of a TiZrHfNbTa refractory high-entropy alloy. Mater. Sci. Eng.: A 645, 255–263 (2015)

[5] L. Lilensten, J.-P. Couzinié, L. Perrière, A. Hocini, C. Keller, G. Dirras, I. Guillot, Study of a bcc multi-principal element alloy: tensile and simple shear properties and underlying deformation mechanisms. Acta Mater. 142, 131–141 (2018)

[6] T. Antoun, D.R. Curran, S.V. Razorenov, L. Seaman, G.I. Kanel, A.V. Utkin, Spall Fracture (Springer, New York, 2003)